• Простые питательные среды. Питательные среды, их классификация Классификация питательных сред по назначению

    Питательные среды классифицируются по происхождению, консистенции, составу, целевому назначению.

    А. По происхождению питательные среды делятся на естественные, искусственные, синтетические.

    Естественными питательные среды называются в тех случаях, когда для выращивания микроорганизмов используются натуральные продукты (молоко, свернутая сыворотка и др.).

    Искусственные питательные среды – это среды, которые готовятся по специальным прописям из различных продуктов, например, мясо-пептонный агар (МПА) или мясо-пептонный бульон (МПБ).

    И естественные, и искусственные среды могут быть растительного (картофельная среда) или животного(молочные, мясные среды) происхождения.

    Синтетическими питательными средами называются такие, которые состоят из растворов химически чистых соединений в точно установленных дозировках. Синтетические среды используются, когда выращиваемую бактериальную клеточную массу необходимо освободить от балластных органических соединений, входящих в состав обычных питательных сред.

    Например, синтетические среды необходимы при получении бактериальных аллергенов или при изучении метаболических потребностей микроорганизмов. Преимущество таких питательных сред состоит в том, что они легко воспроизводимы, так как имеют постоянный состав.

    Б. По консистенции различают питательные среды жидкие, полужидкие и плотные.

    Жидкие среды готовят, используя экстракты, растворы, гидролизаты различных исходных продуктов. Таким образом, вещества, необходимые для питания бактерий, находятся в растворенном состоянии. (Примеры: МПБ, солевой бульон и др.).

    Полужидкие среды готовятся на основе жидких с добавлением в их состав 0,2-1% агара-агара или другого уплотнителя. Уплотнители – вещества, придающие средам требуемую консистенцию. В качестве уплотнителя чаще всего используется агар-агар (по-малайски – желе) – это полисахарид - продукт переработки некоторых морских водорослей; он плавится при температуре 80-86 о С, а затвердевает при 40 о С). Желатина тоже является уплотнителем; она представляет собой экстракт из тканей, содержащих много коллагена (костной или хрящевой). Желатину добавляют в питательные среды в количестве 10-22%. Температура плавления желатины – 25 о С, что делает её неудобной для выращивания большинства микроорганизмов; оптимальная температура культивирования которых составляет 37 о С.

    Кроме того, некоторые бактерии выделяют протеолитические ферменты, разлагающие желатину.

    Плотные питательные среды тоже готовятся на основе жидких, но содержащие агар-агара должно быть не менее 1,5-2%. (Примеры: МПА, сахарный агар).

    Таким образом, консистенция питательных сред определяется количеством содержащихся в их составе агара-агара.

    В. По составу питательные среды могут быть простыми и сложными.

    Простые содержат минимальное количество компонентов (например: МПБ, МПА).

    Сложные готовятся путём добавления к простым определённых дополнительных компонентов (крови, сыворотки, глюкозы и др.).

    Г. По целевому назначению питательные среды делят на основные, элективно-селективные, дифференциально-диагностические, транспортные.

    К основным относятся среды, применяемые для выращивания многих бактерий (примеры МПА, МПБ).

    Элективно-селективные среды предназначены для избирательного выделения и накопления микроорганизмов определённого вида (или определённой группы) из материалов, содержащих разнообразную постороннюю микрофлору. При этом состав сред определяется биологическими особенностями, по которым данный микроорганизм отличается от большинства других. Компоненты таких питательных сред обеспечивают преимущественный рост искомых микроорганизмов и (или) подавление в той или иной степени рост сопутствующей микрофлоры.

    По консистенции эти среды могут быть жидкими(например: 1% пептонная вода для выделения холерного вибриона) или твёрдыми (желточно-солевой агар для выделения стафилококков).

    Дифференциально-диагностические среды предназначены для разграничения отдельных видов или типов микроорганизмов.

    Состав таких питательных сред основан на том, что отдельные виды (или типы) бактерий различаются между собой по биохимической активности вследствие неодинакового набора ферментов.

    В состав таких сред входит обычно:

    Ÿ питательная основа (МПБ или МПА), обеспечивающая рост изучаемых микроорганизмов;

    Ÿ субстат, выявляющий наличие ферментов (например, лактоза, глюкоза);

    Ÿ индикатор. Индикаторы – это вещества, меняющие свой цвет в зависимости от рН среды. Их используют не только для определения кислотности среды, но и вводят в состав питательной среды для выявления биохимических свойств микробов.

    Изменение цвета среды указывает на образование кислоты или щёлочи в результате ферментативной деятельности микробов (например: индикатор Андреде в кислой среде имеет красную окраску, при нейтральном значении рН-бесцветную; аналогичным образом действует индикатор фуксин).

    Примеры дифференциально-диагностических сред: среда Эндо, позволяющая отличать лактозоположительные и лактозоотрицательные энтеробактерии; жидкая среда Раппопорт, выявляющая различия тифозных и паратифозных бактерий и многие другие.

    Выделяют транспортные среды (консервирующие) , которые используются для первичного посева и транспортировки исследуемого материала. Они предотвращают отмирание патогенных микроорганизмов и способствуют подавлению сапрофитов. К этой группе относятся: глицериновая смесь, глицериновый консервант с солями лития и др.

    Приведённая классификация в большой степени условна, так как некоторые среды могут быть одновременно и дифференциально-диагностическими, и селективными (например, среда Плоскирева, ЖСА и другие).

    В настоящее время в лабораторной практике часто используются сухие питательные среды, которые выпускаются в виде полуфабрикатов. Для их производства используется рентабельное непищевое сырьё, отходы мясной и рыбной промышленности. Применение сухих сред избавляет лаборатории от трудоёмкого процесса приготовления обычных сред, позволяет получать сопоставимые результаты в разных лабораториях и приближает к разрешению вопроса о стандартизации питательных сред. Технология приготовления таких сред проста, она указана на этикетке. Сухие питательные среды удобны в транспортировке и хранении.

    Микробиологическое исследование - это выделение чистых культур микроорганизмов, культивирование и изучение их свойств. Чистыми называют культуры, состоящие из микроорганизмов одного вида. Они нужны при диагностике инфекционных болезней, для определения видовой и типовой принадлежности микробов, в исследовательской работе, для получения продуктов жизнедеятельности микробов (токсинов, антибиотиков, вакцин и т. п.).

    Для культивирования микроорганизмов (выращивание в искусственных условиях in vitro) необходимы особые субстраты - питательные среды. На средах микроорганизмы осуществляют все жизненные процессы (питаются, дышат, размножаются и т. д.), поэтому их еще называют средами для культивирования.

    Питательные среды

    Питательные среды являются основой микробиологической работы, и их качество нередко определяет результаты всего исследования. Среды должны создавать оптимальные (наилучшие) условия для жизнедеятельности микробов.

    Требования, предъявляемые к средам

    Среды должны соответствовать следующим требованиям:

    1) быть питательными, т. е. содержать в легко усвояемом виде все вещества, необходимые для удовлетворения пищевых и энергетических потребностей. Ими являются источники органогенов и минеральных (неорганических) веществ, включая микроэлементы. Минеральные вещества не только входят в структуру клетки и активизируют ферменты, но и определяют физико-химические свойства сред (осмотическое давление, рН и др.). При культивировании ряда микроорганизмов в среды вносят факторы роста - витамины, некоторые аминокислоты, которые клетка не может синтезировать;

    Внимание! Микроорганизмы, как все живые существа, нуждаются в большом количестве воды.

    2) иметь оптимальную концентрацию водородных ионов - рН, так как только при оптимальной реакции среды, влияющей на проницаемость оболочки, микроорганизмы могут усваивать питательные вещества.

    Для большинства патогенных бактерий оптимальна слабощелочная среда (рН 7,2-7,4). Исключение составляют холерный вибрион - его оптимум находится в щелочной зоне (рН 8,5-9,0) и возбудитель туберкулеза, нуждающийся в слабокислой реакции (рН 6,2-6,8).

    Чтобы во время роста микроорганизмов кислые или щелочные продукты их жизнедеятельности не изменили рН, среды должны обладать буферностью, т. е. содержать вещества, нейтрализующие продукты; обмена;

    3) быть изотоничными для микробной клетки; т. е. осмотическое давление в среде должно быть таким же, как внутри клетки. Для большинства микроорганизмов оптимальна среда, соответствующая 0,5% раствору натрия хлорида;

    4) быть стерильными, так как посторонние микробы препятствуют росту изучаемого микроба, определению его свойств и изменяют свойства среды (состав, рН и др.);

    5) плотные среды должны быть влажными и иметь оптимальную для микроорганизмов консистенцию;

    6) обладать определенным окислительно-восстановительным потенциалом, т. е. соотношением веществ, отдающих и принимающих электроны, выражаемым индексом RH 2 . Этот потенциал показывает насыщение среды кислородом. Для одних микроорганизмов нужен высокий потенциал, для других - низкий. Например, анаэробы размножаются при RH 2 не выше 5, а аэробы - при RH 2 не ниже 10. Окислительно-восстановительный потенциал большинства сред удовлетворяет требованиям к нему аэробов и факультативных анаэробов;

    7) быть по возможности унифицированным, т. е. содержать постоянные количества отдельных ингредиентов. Так, среды для культивирования большинства патогенных бактерий должны содержать 0,8-1,2 г/л аминного азота NH 2 , т. е. суммарного азота аминогрупп аминокислот и низших полипептидов; 2,5-3,0 г/л общего азота N; 0,5% хлоридов в пересчете на натрия хлорид; 1% пептона.

    Желательно, чтобы среды были прозрачными - удобнее следить за ростом культур, легче заметить загрязнение среды посторонними микроорганизмами.

    Классификация сред

    Потребность в питательных веществах и свойствах среды у разных видов микроорганизмов неодинакова. Это исключает возможность создания универсальной среды. Кроме того, на выбор той или иной среды влияют цели исследования.

    В настоящее время предложено огромное количество сред* в основу классификации которых положены следующие признаки.

    1. Исходные компоненты . По исходным компонентам различают натуральные и синтетические среды. Натуральные среды готовят из продуктов животного и растительного происхождения. В настоящее; время разработаны среды, в которых ценные пищевые продукты (мясо и др.) заменены непищевыми: костной и рыбной мукой, кормовыми дрожжами, сгустками крови и др. Несмотря на то что состав питательных сред из натуральных продуктов очень сложен и меняется в зависимости от исходного сырья, эти среды нашли широкое применение. Синтетические среды готовят из определенных химически чистых органических и неорганических соединений, взятых в точно указанных концентрациях и растворенных в дважды дистиллированной воде. Важное преимущество этих сред в том, что состав их постоянен (известно, сколько и какие вещества в них входят), поэтому эти среды легко воспроизводимы.

    2. Консистенция (степень плотности). Среды бывают жидкие, плотные и полужидкие. Плотные и полужидкие среды готовят из жидких, к которым для получения среды нужной консистенции прибавляют обычно агар-агар или желатин.

    Агар-агар - полисахарид, получаемый из определенных сортов морских водорослей. Он не является для микроорганизмов питательным веществом и служит только для уплотнения среды. В воде агар плавится при 80-100° С, застывает при 40-45° С.

    Желатин - белок животного происхождения. При 25-30° С желатиновые среды плавятся, поэтому культуры на них обычно выращивают при комнатной температуре. Плотность этих сред при рН ниже 6,0 и выше 7,0 уменьшается, и они плохо застывают. Некоторые микроорганизмы используют желатин как питательное вещество - при их росте среда разжижается.

    Кроме того, в качестве плотных сред применяют свернутую сыворотку крови, свернутые яйца, картофель, среды с селикагелем.

    3. Состав . Среды делят на простые и сложные. К первым относят мясопептонный бульон (МПБ), мясопептонный агар (МПА), бульон и агар Хоттингера, питательный желатин и пептонную воду. Сложные среды готовят, прибавляя к простым средам кровь, сыворотку, углеводы и другие вещества, необходимые для размножения того или иного микроорганизма.

    4. Назначение : а) основные (общеупотребительные) среды служат для культивирования большинства патогенных микробов. Это вышеупомянутые МПА, МПБ, бульон и агар Хоттингера, пептонная вода;

    б) специальные среды служат для выделения и выращивания микроорганизмов, не растущих на простых средах. Например, для культивирования стрептококка к средам прибавляют сахар, для пневмо- и менингококков - сыворотку крови, для возбудителя коклюша - кровь;

    в) элективные (избирательные) среды служат для выделения определенного вида микробов, росту которых они благоприятствуют, задерживая или подавляя рост сопутствующих микроорганизмов. Так, соли желчных кислот, подавляя рост кишечной палочки, делают среду элективной для возбудителя брюшного тифа. Среды становятся элективными при добавлении к ним определенных антибиотиков, солей, изменении рН.

    Жидкие элективные среды называют средами накопления. Примером такой среды служит пептонная вода с рН 8,0. При таком рН на ней активно размножается холерный вибрион, а другие микроорганизмы не растут;

    г) дифференциально-диагностические среды позволяют отличить (дифференцировать) один вид микробов от другого по ферментативной активности, например среды Гисса с углеводами и индикатором. При росте микроорганизмов, расщепляющих углеводы, изменяется цвет среды;

    д) консервирующие среды предназначены для первичного посева и транспортировки исследуемого материала; в них предотвращается отмирание патогенных микроорганизмов и подавляется развитие сапрофитов. Пример такой среды - глицериновая смесь, используемая для сбора испражнений при исследованиях, проводимых с целью обнаружения ряда кишечных бактерий.

    Рецепты приготовления некоторых сред приведены в конце следующего раздела и во второй части учебника.

    Контрольные вопросы

    1. Каким требованиям должны удовлетворять питательные среды?

    2. Как классифицируют среды по исходным компонентам?

    3. Какие вещества служат для уплотнения сред?

    4. Какие среды являются простыми или общеупотребительными и для чего их применяют?

    5. Какие среды называют сложными, что служит их основой?

    6. Какие среды позволяют получить преимущественный рост одних микробов при одновременном подавлении других?

    7. На каких средах изучают ферментативную активность микробов?

    Задание

    Заполните форму, указав на какие группы подразделяют среды.

    Приготовление сред

    Посуда для приготовления сред не должна содержать посторонних веществ, например щелочей, выделяемых некоторыми сортами стекла, или окислов железа, которые могут попасть в среду при варке ее в ржавых кастрюлях. Лучше всего пользоваться стеклянной, эмалированной или алюминиевой посудой. Большие количества среды (десятки и сотни литров) готовят в специальных варочных котлах или реакторах (рис. 14). Перед употреблением посуду необходимо тщательно вымыть, прополоскать и высушить. Новую стеклянную посуду предварительно кипятят 30 мин в 1-2% растворе хлороводородной кислоты или погружают в этот раствор на ночь, после чего в течение часа прополаскивают в проточной воде.

    Внимание! Посудой, предназначенной для приготовления сред, нельзя пользоваться в других целях, например для хранения химических реактивов или дезинфицирующих растворов - даже следы этих веществ могут помешать росту микроорганизмов.

    Исходным сырьем для приготовления большинства сред служат продукты животного или растительного происхождения: мясо и его заменители, молоко, яйца, картофель, соя, кукуруза, дрожжи и др.

    Основные питательные бульоны готовят на мясной воде или на различных переварах, полученных при кислотном или ферментативном гидролизе исходного сырья. Бульоны из переваров в 5-10 раз экономичнее, чем из мясной воды. Среды на переварах богаче аминокислотами, следовательно, питательнее; обладают большей буферностью, т. е. имеют более стабильную величину рН. Кроме того, перевары можно готовить из заменителей мяса (сгустков крови, плаценты, казеина и т. д.).

    В настоящее время снабжение лабораторий мясной водой и переварами централизованно. Чаще пользуются панкреатическим переваром Хоттингера, гидролизатами казеина или кормовых дрожжей. Из этих полуфабрикатов по определенным рецептам готовят необходимые среды.

    Этапы приготовления сред: 1) варка; 2) установление оптимальной величины рН; 3) осветление; 4) фильтрация; 5) разлив; 6) стерилизация; 7) контроль.

    Варят среды на открытом огне, водяной бане, в автоклаве или варочных котлах, подогреваемых паром.

    Установление рН сред ориентировочно производят с помощью индикаторных бумажек. Для точного определения рН пользуются потенциометром, применяя стеклянные электроды в соответствии с инструкцией или компаратором (аппарат Михаэлиса), состоящим из штатива с гнездами для пробирок (рис. 15) и набора стандартов определенного рН. При приготовлении сред пользуются обычно индикатором метанитрофенолом, изменяющим свой цвет в диапазоне 6,8-8,4.

    Для определения рН среды 4 пробирки, диаметр и цвет стекла которых не отличается от пробирок со стандартами, помещают в гнезда 1, 2, 3 и 5 (см. рис. 15). В 1-ю и 3-ю пробирки наливают по 5 мл дистиллированной воды; в 5-ю - 7 мл; во 2-ю - 4 мл воды и 1 мл индикатора. В гнезда 4 и 6 ставят стандарты нужного рН. В 1-ю, 2-ю и 3-ю пробирки наливают 2 мл охлажденной среды. Содержимое пробирок смешивают.

    Цвет жидкостей в пробирках сравнивают в проходящем свете, закрыв заднюю прорезь прибора фильтром (матовым или синим, если жидкости интенсивно желтые). рН испытуемого раствора соответствует рН стандарта, с цветом которого совпадает его цвет.

    Готовя среды с заданным рН, в гнезде 4 и 6 ставят стандарты, рН которых близок к требуемому, а во 2-ю пробирку с испытуемой средой и индикатором добавляют из бюретки определенное количество раствора щелочи, если жидкость во 2-й пробирке светлее стандартов, или раствора кислоты - если светлее стандарты. Щелочь (или кислоту) приливают до тех пор, пока цвет жидкости во 2-й пробирке не совпадает с цветом стандартов. Количество щелочи (или кислоты), прибавленное к 2 мл среды во 2-й пробирке, пересчитывают на весь объем приготовленной среды. Например, если для получения нужного рН на 2 мл среды пошло 2 капли (0,1 мл) 0,05 н. раствора щелочи, то для подщелачивания 1 л нужно в 500 раз больше, т. е. 50 мл 0,05 н. или 2,5 мл 1 н. раствора щелочи.

    При стерилизации рН сред снижается на 0,2, поэтому для получения среды с рН 7,2-7,4 ее сначала готовят с рН 7,4-7,6.

    Осветление сред производят, если при варке они мутнеют или темнеют. Для осветления в среду, подогретую до 50° С, вливают белок куриного яйца, взбитый с двойным количеством воды, перемешивают и кипятят. Свертываясь, белок увлекает в осадок взвешенные в среде частицы. Таким же способом можно вместо яичного белка использовать сыворотку крови (20-30 мл на 1 л среды).

    Фильтрацию жидких и расплавленных желатиновых сред производят через влажный бумажный или через матерчатые фильтры. Фильтрация агаровых сред затруднена, - они быстро застывают. Обычно их фильтруют через ватно-марлевый фильтр (в воронку помещают марлевую салфетку и на нее пышный комок ваты). Можно пользоваться бумажными или матерчатыми фильтрами, если проводить фильтрацию в горячем автоклаве или в воронках с подогревом.

    Фильтрацию агаровых сред можно заменить отстаиванием. Среду наливают в высокий цилиндрический сосуд и расплавляют в автоклаве. При медленном остывании среды в выключенном приборе взвешенные в ней частицы оседают на дно. На следующий день агаровый сгусток извлекают из сосуда (для этого сосуд ненадолго помещают в горячую воду) и отрезают ножом нижнюю часть со скопившимся осадком. Верхнюю часть растапливают и разливают в соответствующие емкости.

    Разливают среды в пробирки (по 3-5 мл или по 10 мл), флаконы, колбы, матрацы и бутылки не более чем на 2 / 3 емкости, так как при стерилизации могут намокнуть пробки и среды утратят стерильность.

    Среды, которые стерилизуют при температуре выше 100° С, разливают в чистую сухую посуду. Среды, стерилизуемые при более низкой температуре, обязательно разливают в стерильную посуду.

    Разливают среды с помощью воронки, на конец которой надета резиновая трубка с зажимом Мора. Для мерного разлива применяют мензурки, бюретки, дозаторы, шприцы-пипетки и т. п. (рис. 16).

    Посуду со средой обычно закрывают ватно-марлевыми пробками, поверх которых надевают бумажные колпачки. Важно, чтобы при разливе среда не смачивала края посуды, иначе к ним могут прилипнуть пробки. К каждому сосуду обязательно прикрепляют этикетку с названием среды и датой ее приготовления.

    Стерилизация . Режим стерилизации зависит от состава среды и указан в ее рецепте. Примерная схема режима стерилизации сред приведена в табл. 8.

    1 (Жидкие среды с углеводами, белками или витаминами лучше стерилизовать с помощью бактериальных фильтров. )

    Контроль готовых сред: а) для контроля стерильности среды ставят в термостат на 2 сут, после чего просматривают. Если на средах не появятся признаки роста, их считают стерильными и передают для химического контроля по нескольку образцов каждой серии; б) химический контроль: окончательно устанавливают рН, содержание общего и аминного азота, пептона, хлоридов (их количество должно соответствовать указанному в рецепте).

    Химический контроль сред производят в химической лаборатории; в) для биологического контроля несколько образцов среды засевают специально подобранными культурами микроорганизмов, и по их росту судят о питательных (ростовых) свойствах среды. К готовой среде прилагают этикетку и паспорт, в котором указывают название и состав среды, результаты контроля и др.

    Хранят среды при комнатной температуре в шкафах, желательно специально для них предназначенных. Некоторые среды, например, среды с кровью и витаминами, хранят в холодильнике.

    Рецепты приготовления простых (основных) сред и изотонического раствора натрия хлорида

    Изотонический раствор натрия хлорида . К 1 л дистиллированной воды добавляют 9 г натрия хлорида. Раствор фильтруют, устанавливают заданный рН и, если нужно, стерилизуют при 120° С в течение 30 мин.

    Мясопептонный бульон (МПБ) . К мясной воде прибавляют 1% пептона и 0,5% х. ч. натрия хлорида, кипятят на слабом огне 10-15 мин для растворения веществ, устанавливают нужный рН и снова кипятят 30-40 мин до выпадения осадка. Фильтруют, доливают до первоначального объема водой и стерилизуют 20 мин при 120° С.

    Бульон Хоттинтера . Перевар Хоттингера разводят водой в 5-6 раз в зависимости от того, какое количество аминного азота он содержит и какое его количество должно быть в бульоне (указано в паспорте перевара и рецепте среды). Например, для приготовления среды с 1,2 г/л аминного азота перевар, содержащий 9,0. г/л, надо развести в 7 5 раз (9,0:1,2). К разведенному перевару прибавляют 0,5% натрия хлорида и кипятят на слабом огне до растворения соли, В остывшей среде устанавливают рН, фильтруют, разливают и стерилизуют 20 мин при

    Мясопептонный агар (МПА) . К готовому бульону (до стерилизации или после нее) добавляют 2-3% измельченного агар-агара и кипятят, помешивая, на слабом огне до полного расплавления агара. МПА можно варить в автоклаве или аппарате Коха. Готовую среду, если нужно, осветляют, фильтруют и стерилизуют 20 мин при 120° С.

    Полужидкий агар содержит 0,4-0,5% агар-агара .

    Питательный желатин . К готовому бульону прибавляют 10-15% желатина, подогревают ДО его расплавления (не кипятят!), разливают в стерильную посуду и стерилизуют текучим паром.

    Рецепты приготовления сложных сред

    Среды с углеводами . К основному бульону или расплавленному агару прибавляют нужное количество (0,1-2%) определенного углевода (например, глюкозы). После его растворения разливают в стерильную посуду и стерилизуют текучим паром. Поскольку углеводы частично разрушаются даже при таком режиме стерилизации, предпочтительнее 25-30% раствор углеводов, простерилизованный через бактериальный фильтр, добавлять в нужном объеме с соблюдением асептики к стерильным основным средам - после контроля стерильности среда готова к употреблению.

    Среды с кровью готовят из стерильных простых сред, добавляя в асептических условиях (лучше в боксе) от в до 30% (обычно 5%) стерильной дефибринированной крови. Агаровые среды перед этим растапливают и остужают до 45° С. Определяют температуру среды, поднося сосуд к шее у угла нижней челюсти. При нужной температуре должно быть терпимое ощущение горячего, но не ожога. После добавления крови, пока среда не застыла, содержимое сосуда тщательно перемешивают и разливают в чашки или пробирки.

    Внимание! Среды с кровью растапливать нельзя - кровь изменит свои свойства.

    Среды с сывороткой крови готовят так же, как среды с кровью. К основным средам добавляют 10-20% сыворотки, не содержащей консерванта и предварительно инактивированной при 56° С в течение 30 мин на водяной бане или в инактиваторе. При инактивации разрушается вещество (комплемент), губительно действующее на микробы.

    Среды с желчью . К простым средам добавляют желчь в количестве 10-40% объема среды, устанавливают нужный рН и стерилизуют 20 мин при 120° С. Можно стерильную желчь добавить к стерильной среде в асептических условиях.

    Разлив агаровых сред в чашки Петри . Среды перед разливом расплавляют на водяной бане и остужают до 45-50° С. Обычно для чашки диаметром 9 см достаточно 15-20 мл среды (высота слоя 0,25-0,3 см). Если слой выше, на нем менее контрастно выглядят колонии. При очень тонком слое резко ограничено количество питательных веществ и влаги (среда быстро высыхает) - ухудшаются условия культивирования.

    Разливают среды в стерильные чашки в асептических условиях. Чашки ставят крышкой вверх. Сосуд со средой берут в правую руку, держа его у огня. Левой рукой вынимают пробку, зажав ее мизинцем и ладонью. Обжигают горлышко сосуда и двумя пальцами левой руки слегка приоткрывают крышку. Вводят под нее горлышко флакона, не прикасаясь им к краю чашки. Наливая среду, следят чтобы она равномерно распределилась по дну чашки. Если при разливе на поверхности среды образуются пузырьки воздуха, к ним до того, как среда застынет, подносят пламя спички или горелки - пузырьки лопнут. Затем чашку закрывают и дают среде застыть. Если посев производят в день разлива, среду необходимо подсушить. Для этого чашки в термостате осторожно открывают и устанавливают крышки и чашки открытой стороной вниз на 20-30 мин. Если посев производят на следующий день после разлива, чашки, не подсушивая, завертывают в ту же бумагу, в которой их стерилизовали, и помещают в холодильник.

    Приготовление скошенного агара . Пробирки с 4-5 мл стерильной расплавленной агаровой среды укладывают в наклонном положении (примерно под углом 20 °) с таким расчетом, чтобы среда не заходила за 2 / 3 пробирки, иначе она может смочить пробку. После того как среда застынет, пробирки ставят вертикально - дают стечь конденсату. Лучше употреблять свежескошенный агар.

    Внимание! Пользоваться средой, в которой нет конденсата, нельзя. Ее следует снова растопить на водяной бане и скосить.

    Сухие среды

    Отечественная промышленность выпускает сухие среды разного назначения: простые, элективные, дифференциально-диагностические, специальные. Это порошки во флаконах с завинчивающимися крышками. Хранят сухие среды в темном месте плотно закрытыми - они гигроскопичны. В лаборатории из порошков готовят среды по прописи на этикетке.

    Преимущество сухих сред по сравнению со средами, изготовленными в лаборатории, - стандартность (их выпускают большими партиями), простота приготовления, делающая их доступными в любых (даже походных) условиях, стабильность, экономичность. Важно, что их можно готовить из заменителей мяса: гидролизата казеина, фибрина, кильки и даже белковых фракций микробных клеток (сарцин).

    Контрольные вопросы

    1. Каким должен быть рН сред для культивирования большинства патогенных микробов перед стерилизацией и почему?

    2. При какой температуре плавятся и застывают агаровые среды?

    3. Как должна быть подготовлена посуда, в которую разливают среды с углеводами и белками?

    Задание

    1. Приготовьте МПБ, МПА, бульон и агар Хоттингера с рН 7,2-7,4, разлейте во флаконы и пробирки; простерилизуйте.

    2. Приготовьте из сухих порошков среды Гисса, разлейте в пробирки по 4-5 мл и простерилизуйте.

    3. Приготовьте агар с кровью и разлейте его в чашки Петри.

    4. Приготовьте из сухих порошков среды Эндо, ЭМС, Плоскирева и разлейте их в чашки Петри.

    5. Приготовьте скошенный агар.

    Методы посевов

    Важным этапом бактериологического исследования является посев. В зависимости от цели исследования, характера посевного материала и среды используют разные методы посева. Все они включают обязательную Цель: оградить посев от посторонних микробов. Поэтому работать следует быстро, но без резких движений, усиливающих колебания воздуха. Во время посевов нельзя разговаривать. Посевы лучше делать в боксе.

    Внимание! Не забывайте выполнять правила личной безопасности при работе с заразным материалом.

    Посев из пробирки в пробирку . Пробирку с посевным материалом и пробирку со средой держат слегка наклонно в левой руке между большим и указательным пальцами так, чтобы края пробирок были на одном уровне, а их основания находились поверх кисти. Обычно пробирку с посевным материалом держат ближе к себе. В правой руке, как писчее перо, держат бактериальную петлю, и стерилизуют ее, держа вертикально в пламени горелки. Мизинцем и краем ладони правой руки вынимают обе пробки одновременно. Извлекают пробки не рывком, а плавно - легкими винтовыми движениями. Вынув пробки, края пробирок обжигают в пламени горелки. Прокаленную петлю вводят через пламя горелки в пробирку с посевным материалом, охлаждают и, набрав немного материала, осторожно переносят в пробирку со средой.

    При посеве в жидкую среду посевной материал растирают на стенке пробирки над жидкостью и смывают средой.

    При посеве на жидкие среды тампоном его погружают в среду и 3-5 с ополаскивают в ней. При посеве на плотную среду материал втирают в ее поверхность, вращая тампон, после чего тампон обеззараживают (помещают в пробирку, в которой он был доставлен в лабораторию, и автоклавируют).

    Внимание! Следите, чтобы среда не вылилась и не смочила пробку.

    При посеве на скошенный агар материал обычно растирают на поверхности среды зигзагообразными движениями снизу вверх, начиная от границы конденсата.

    При посеве на плотные среды, разлитые в пробирки столбиком, петлей с посевным материалом прокалывают столбик, производя так называемый посев "уколом".

    После посева петлю извлекают из пробирки, края пробирок обжигают и, проведя пробки через пламя горелки, закрывают пробирки, после чего прокаливают петлю.

    Посев жидкого материала можно производить стерильными пипетками (пастеровскими или градуированными). После посева пипетки погружают в дезинфицирующую жидкость.

    Посевы во флаконы, матрацы и бутыли производят примерно так, как в пробирки, только сначала набирают материал (петлей или в пипетку), а потом открывают сосуд со средой.

    Сосуды с засеянной культурой надписывают и ставят в термостат.

    Посев на пробирки с чашки Петри . Изучив характер роста культуры на чашке, со стороны дна отмечают восковым карандашом нужный для посева участок. Чашку с посевным материалом ставят перед собой крышкой вверх. Левой рукой приоткрывают крышку и вводят под нее обожженную петлю. Остудив петлю, набирают посевной, материал с отмеченного участка. Вынимают петлю, закрывают чашку и в левую руку берут пробирку со средой. Посев производят так же, как с пробирки в пробирку. После посева чашку поворачивают вверх дном.

    Посев на агар в чашки Петри . Посев шпателем. Шпатель - это стеклянная или металлическая трубочка, конец которой загнут в виде треугольника. Шпатель можно сделать из пастеровской пипетки, согнув под углом ее тонкий конец, предварительно разогретый в пламени горелки.

    Левой рукой слегка приоткрывают крышку, держа ее большим и указательным пальцем. Петлей, пипеткой или стеклянной палочкой наносят на поверхность среды посевной материал, после чего тщательно втирают его круговыми движениями шпателя до тех пор, пока шпатель не перестанет свободно скользить по поверхности среды, левой рукой при этом придерживают крышку и одновременно вращают чашку. По окончании посева шпатель вынимают из чашки и закрывают крышку. Стеклянный шпатель помещают в дезинфицирующий раствор, а металлический прокаливают в пламени горелки.

    Посев петлей. Небольшое количество посевного материала (иногда его предварительно эмульгируют в стерильном изотоническом растворе или бульоне) втирают петлей в поверхность среды у края чашки, несколько раз проводя петлей из стороны в сторону. Затем у того места, где закончились штрихи, агар прокалывают петлей, снимая избыток посевного материала. Оставшийся на петле посевной материал зигзагообразными движениями распределяют по всей поверхности среды. По окончании посева закрывают чашку и прожигают петлю.

    Посев петлей на секторы. Чашку со стороны дна расчерчивают на секторы. Посев производят зигзагообразными движениями от края чашки к центру. Необходимо следить, чтобы штрихи не заходили на соседний сектор.

    Посев тампоном. Тампон с посевным материалом вносят в слегка приоткрытую чашку и круговыми движениями втирают его содержимое в поверхность среды, вращая при этом тампон и чашку.

    Посев газоном. Примерно 1 мл (20 капель) жидкой культуры (если культура с плотной среды, ее эмульгируют в стерильном изотоническом растворе или бульоне) наносят на поверхность агара и тщательно распределяют жидкость по поверхности среды. Чашку слегка наклоняют и пипеткой отсасывают избыток культуры, выливая ее в дезинфицирующий раствор. Туда же помещают пипетку.

    Посев в толщу агара. Культуру, выращенную на жидкой среде, или эмульгированный материал вносят в сосуд с расплавленным и остуженным до 45° С агаром, перемешивают и выливают в стерильную чашку Петри. Можно внести посевной материал в пустую чашку и залить 15-20 мл остуженного до 45° С агара. Для перемешивания содержимого чашки ее слегка покачивают и вращают. Чашки оставляют на столе до застывания среды.

    Засеянные чашки подписывают со стороны дна и помещают в термостат дном вверх.

    Контрольные вопросы

    1. Нужны ли асептические условия во время посева? Обоснуйте ответ.

    2. Как нужно обработать рабочее место по окончании посевов?

    Методы культивирования

    Для успешного культивирования, помимо правильно подобранных сред и правильно произведенного посева, необходимы оптимальные условия: температура, влажность, аэрация (снабжение воздухом). Как правило, подходящие условия удается создать, тщательно воспроизведя условия природной обстановки.

    Температура . Оптимальную температуру для культивирования большинства патогенных микроорганизмов (37° С) создают в термостате (рис. 17). Это прибор с двойными стенками, между которыми находится воздух или вода, подогреваемые электричеством. Он снабжен терморегулятором, автоматически поддерживающим нужную температуру, и термометром для контроля за температурой.

    Пробирки с посевами в штативах, проволочных сетках или банках устанавливают на полках термостата. Чашки в термостате должны стоять вверх дном. Чтобы воздух в термостате свободно циркулировал и нагрев был равномерным, полки в термостате делают с прорезями и плотно не загружают. Чтобы не охладить культуры, термостат не оставляют надолго открытым.

    Лаборант обязан ежедневно регистрировать температуру в термостате и поддерживать чистоту в приборе, а при неисправности вызвать мастера.

    Свет подавляющему большинству микробов (к ним относятся все патогенные) не нужен - их культивируют в темноте. Однако для изучения пигментообразования, которое происходит активнее на рассеянном свету, культуры после термостата выдерживают 2-3 дня при комнатном освещении.

    Внимание! Следует избегать попадания прямых солнечных лучей, действующих на культуры губительно.

    Влажность . Жизнь микробов невозможна без влаги - питательные вещества проникают в клетку только в растворенном виде. Это необходимо учитывать при культивировании на плотных средах: разливать их в чашки и скашивать в пробирках лучше в день посева. При культивировании микробов, особенно чувствительных к отсутствию влаги, например гонококков, в термостат ставят открытый сосуд с водой.

    Сроки культивирования . Большинство патогенных микробов культивируют 18-24 ч, но есть виды, растущие медленно (до 4-6 нед). Чтобы сохранить в них влагу, ватные пробки после посева заменяют стерильными резиновыми или надевают на них резиновые колпачки.

    Внимание! Резиновые пробки стерилизуют в автоклаве завернутыми в бумагу.

    Аэрация . По потребности микробов в свободном кислороде их делят на аэробы и анаэробы. Обе группы требуют различных условий культивирования.

    Поступление кислорода, необходимого для культивирования аэробов и факультативных анаэробов, осуществляется при пассивной и активной аэрации.

    Пассивная аэрация - это культивирование на плотных и жидких средах в сосудах, закрытых ватными или ватно-марлевыми пробками, или в чашках Петри. При таком культивировании микробы потребляют кислород, растворенный в среде, находящийся в сосуде над средой и поступающий через пробку. Пассивно аэрируемые культуры можно выращивать на поверхности или в тонком слое среды, куда проникает кислород воздуха.

    Активную аэрацию применяют при глубинном культивировании микробов, когда их выращивают в больших объемах среды. Чтобы достаточно снабдить кислородом такие культуры, их помещают в специальные качалки - постоянное перемешивание культуры обеспечивает соприкосновение ее с воздухом. При культивировании в объемах жидкости, достигающих десятков и сотен литров, проводимом в приборах, называемых реакторами или ферментерами, воздух продувают через культуру при помощи специальных устройств.

    Культивирование анаэробов сложнее, чем аэробов, так как их необходимо лишить доступа свободного кислорода воздуха. Для этого удаляют воздух из питательной среды различными способами.

    Культивирование актиномицетов, грибов, микоплазм, L-форм, спирохет и простейших . Культивирование этих микроорганизмов принципиально сходно с культивированием бактерий. Для них разработаны специальные среды и подобраны режимы, соответствующие их потребностям.

    Чистой культурой называют скопление микробов одного вида на плотной или в жидкой питательной среде.

    Существует ряд методов выделения чистой культуры в зависимости от свойств изучаемого материала и цели исследования. Обычно чистые культуры получают из изолированных колоний - обособленных скоплений микробов на плотной среде. Считают, что чаще всего колония развивается из одной микробной клетки, т. е. является чистой культурой этого микроорганизма.

    Этапы выделения чистой культуры:

    1-й день - получение изолированных колоний. Каплю исследуемого материала петлей, пипеткой или стеклянной палочной наносят на поверхность агара в чашке Петри. Шпателем втирают материал в поверхность среды; не прожигая и не перевертывая шпателя, производят посев на 2-й, а затем на 3-й чашке. При таком посеве на 1-ю чашку приходится много материала и соответственно много микробов, на 2-ю меньше и на 3-ю еще меньше.

    Можно получить изолированные колонии при посеве петлей. Для этого исследуемый материал эмульгируют в бульоне или изотоническом растворе натрия хлорида.

    2-й день - изучают рост микробов на чашках. В 1-й чашке обычно бывает сплошной рост - выделить изолированную колонию не удается. На поверхности агара во 2-й и 3-й чашке вырастают изолированные колонии. Их изучают невооруженным глазом, с помощью лупы, при малом увеличении микроскопа и иногда в стереоскопическом микроскопе (см. главу 31). Нужную колонию отмечают со стороны дна чашки и пересевают на скошенный агар. Посевы ставят в термостат.

    Внимание! Пересевать можно только изолированные колонии.

    3-й день - изучают характер роста на скошенном агаре. Делают мазок, окрашивают его и, убедившись в том, что культура чистая, приступают к ее изучению. На этом выделение чистой культуры заканчивается. Выделенная из определенного источника и изученная культура, называется штаммом.

    При выделении чистой культуры из крови (гемокультуры) ее предварительно "подращивают" в жидкой среде: 10-15 мл стерильно взятой крови засевают в 100-150 мл жидкой среды. Так поступают потому, что в крови обычно мало микробов. Соотношение засеваемой крови и питательной среды 1:10 не случайно - так достигается разведение крови (неразведенная кровь губительно действует на микроорганизмы). Колбы с посевом ставят в термостат. Через сутки (иногда через большее время в зависимости от выделяемой культуры) из содержимого колб делают высевы на чашки для получения изолированных колоний. При необходимости повторяют высевы с интервалами 2-3 дня.

    При выделении чистой культуры из мочи, промывных вод желудка и других жидкостей их предварительно центрифугируют в асептических условиях и засевают осадок. Дальнейшее выделение чистой культуры производят обычным способом.

    Для выделения чистой культуры широко применяют элективные среды.

    В ряде методов для получения чистых культур используют биологические особенности выделяемого микроба. Например, при выделении спорообразующих бактерий посевы прогревают при 80° С 10 мин, убивая этим вегетативные формы; при выделении возбудителя туберкулеза, устойчивого к кислотам и щелочам, с помощью этих веществ посевной материал освобождают от сопутствующей флоры; для выделения пневмококка и палочки чумы исследуемый материал вводят белым мышам - в их организме, высокочувствительном к данным возбудителям, эти микробы размножаются быстрее других.

    В научно-исследовательской работе, особенно при генетических исследованиях, необходимо получать культуры заведомо из одной клетки. Такая культура называется клон. Для ее получения чаще всего пользуются микроманипулятором - прибором, снабженным инструментами (иглами, пипетками) микроскопических размеров. С помощью держателя под контролем микроскопа их вводят в препарат "висячая капля", извлекают нужную клетку (одну) и переносят ее в питательную среду.

    Изучение выделенных культур

    Изучение морфологии, подвижности, тинкториальных свойств (см. главу 3), характера роста на средах (культуральные свойства), ферментативной активности и ряда других особенностей выделенного микроба позволяет установить его таксономическое положение, т. е. классифицировать микроорганизм: определить его род, вид, тип, подтип, разновидность. Это называется идентификацией. Идентификация микроорганизмов очень важна при диагностике инфекций, установлении источников и путей ее передачи и в ряде других научно-практических исследований.

    Культуральные свойства

    Разные виды микроорганизмов по-разному растут на средах. Эти различия служат для их дифференциации. Одни хорошо растут на простых средах, другие - требовательны и растут только на специальных. Микроорганизмы могут давать обильный (пышный) рост, умеренный или скудный. Культуры могут быть бесцветными, сероватыми, серо-голубыми. Культуры микроорганизмов, образующих пигмент, имеют разнообразную окраску: белую, желтую или золотистую у стафилококка, красную - у чудесной палочки, сине-зеленую - у сине-зеленой палочки, пигмент которой, растворимый в воде, окрашивает не только колонии, но и среду.

    На плотных средах микроорганизмы в зависимости от количества посевного материала образуют или сплошной налет ("газон"), или изолированные колонии. Культуры бывают грубые и нежные, прозрачные и непрозрачные, с поверхностью матовой, блестящей, гладкой, шероховатой, сухой, бугристой.

    Колонии могут быть крупные (4-5 мм в диаметре и больше), средние (2-4 мм), мелкие (1-2 мм) и карликовые (меньше 1 мм). Они различаются по форме, расположению на поверхности среды (выпуклые, плоские, куполообразные, вдавленные, круглые, розеткообразные), форме краев (ровные, волнистые, изрезанные).

    В жидких средах микроорганизмы могут образовывать равномерную муть, давать осадок (зернистый, пылевидный, хлопьевидный) или пленку (нежную, грубую, морщинистую).

    На полужидких средах при посеве уколом подвижные микробы вызывают помутнение толщи среды, неподвижные - растут только по "уколу", оставляя остальную среду прозрачной.

    Культуральные свойства определяют, изучая характер роста культуры простым глазом, с помощью лупы, под малым увеличением микроскопа или пользуясь стереоскопическим микроскопом. Величину и форму колоний, форму краев и прозрачность изучают в проходящем свете, рассматривая чашки со стороны дна. В отраженном свете (со стороны крышки) определяют характер поверхности, окраску. Консистенцию определяют прикосновением петли.

    Морфологические свойства

    Изучение морфологии микробов тоже служит для их дифференциации. Морфологию изучают в окрашенных препаратах. Устанавливают форму и величину клеток, их расположение в препарате, наличие спор, капсул, жгутиков. В окрашенных препаратах определяют отношение микробов к краскам (тинкториальные свойства) - хорошо или плохо воспринимают краски, как относится к дифференциальным окраскам (в какой цвет окрашивается по Граму, Цилю - Нильсену и др.). Витальная (прижизненная) окраска позволяет установить подвижность, отдифференцировать живые и мертвые клетки, следить за их делением. Деление и подвижность можно изучать в нативных (неокрашенных) препаратах (см. главу 3).

    Ферментативная активность

    Ферментативная активность микроорганизмов богата и разнообразна. По ней можно установить не только видовую и типовую принадлежность микроба, но и определить его варианты (так называемые биовары). Рассмотрим основные ферментативные свойства и их качественное определение.

    Расщепление углеводов (сахаролитическая активность), т. е. способность расщеплять сахара и многоатомные спирты с образованием кислоты или кислоты и газа, изучают на средах Гисса, которые содержат тот или иной углевод и индикатор. Под действием образующейся при расщеплении углевода кислоты индикатор изменяет окраску среды. Поэтому эти среды названы "пестрый ряд". Микробы, не ферментирующие данный углевод, растут на среде, не изменяя ее. Наличие газа устанавливают по образованию пузырьков в средах с агаром или по скоплению его в "поплавке" на жидких средах. "Поплавок" - узкая стеклянная трубочка с запаянным концом, обращенным вверх, которую до стерилизации помещают в пробирку со средой (рис. 18).


    Рис. 18. Изучение сахаролитической активности микроорганизмов. I - "пестрый ряд": а - жидкая среда с углеводами и индикатором Андреде; б - полужидкая среда с индикатором ВР: 1 - микроорганизмы не ферментируют углевод; 2 - микроорганизмы ферментируют углевод с образованием кислоты; 3 - микроорганизмы ферментируют углевод с образованием кислоты и газа; II - колонии микроорганизмов, не разлагающих (бесцветные) и разлагающих лактозу (фиолетовые на среде ЭМС - слева, красные на среде Эндо - справа)

    Кроме того, сахаролитическую активность изучают на средах Эндо, ЭМС, Плоскирева. Микроорганизмы, сбраживая до кислоты находящийся в этих средах молочный сахар (лактозу), образуют окрашенные колонии - кислота изменяет цвет имеющегося в среде индикатора. Колонии микробов, не ферментирующих лактозу, бесцветны (см. рис. 18).

    Молоко при росте микробов, сбраживающих лактозу, свертывается.

    При росте микроорганизмов, образующих амилазу, на средах с растворимым крахмалом происходит его расщепление. Об этом узнают, прибавив к культуре несколько капель раствора Люголя - цвет среды не изменяется. Нерасщепленный крахмал дает с этим раствором синее окрашивание.

    Протеолитические свойства (т. е. способность расщеплять белки, полипептиды и т. п.) изучают на средах с желатином, молоком, сывороткой, пептоном. При росте на желатиновой среде микробов, ферментирующих желатин, среда разжижается. Характер разжижения, вызываемый разными микробами, различен (рис. 19). Микробы, расщепляющие казеин (молочный белок), вызывают пептонизацию молока - оно приобретает вид молочной сыворотки. При расщеплении пептонов могут выделяться индол, сероводород, аммиак. Их образование устанавливают с помощью индикаторных бумажек. Фильтровальную бумагу заранее пропитывают определенными растворами, высушивают, нарезают узенькими полосками длиной 5-6 см и после посева культуры на МПБ помещают под пробку между нею и стенкой пробирки. После инкубации в термостате учитывают результат. Аммиак вызывает посинение лакмусовой бумажки; при выделении сероводорода на бумажке, пропитанной 20% раствором свинца ацетата и натрия гидрокарбоната, происходит образование свинца сульфата - бумажка чернеет; индол вызывает покраснение бумажки, пропитанной раствором щавелевой кислоты (см. рис. 19).

    Помимо указанных сред, способность микроорганизмов расщеплять различные питательные субстраты определяют с помощью бумажных дисков, пропитанных определенными реактивами (системы индикаторные бумажные "СИБ"). Эти диски опускают в пробирки с исследуемой культурой и уже через 3 ч инкубации в термостате при 37° С по изменению цвета дисков судят о разложении углеводов, аминокислот, белков и т. д.

    Гемолитические свойства (способность разрушать эритроциты) изучают на средах с кровью. Жидкие среды при этом становятся прозрачными, а на плотных средах вокруг колонии появляется прозрачная зона (рис. 20). При образовании метгемоглобина среда зеленеет.

    Сохранение культур

    Выделенные и изученные культуры (штаммы), представляющие ценность для науки или производства, хранят в музеях живых культур. Общесоюзный музей находится в Государственном НИИ стандартизации и контроля медицинских биологических препаратов им. Л. А. Тарасевича (ГИСК).

    Задача хранения - поддержать жизнеспособность микроорганизмов и предупредить их изменчивость. Для этого надо ослабить или прекратить обмен в микробной клетке.

    Один из самых совершенных методов длительного сохранения культур - лиофилизация - высушивание в вакууме из замороженного состояния позволяет создать состояние анабиоза. Высушивание проводят в специальных аппаратах. Хранят культуры в запаянных ампулах при температуре 4° С, лучше при -30-70° С.

    Восстановление высушенных культур. Сильно нагревают кончик ампулы в пламени горелки и прикасаются к нему ватным тампоном, слегка * смоченным холодной водой, чтобы на стекле образовались микротрещины, через которые воздух медленно просочится внутрь ампулы. При этом, проходя через разогретые края трещин, воздух стерилизуется.

    * (При избытке воды на тампоне она может попасть в ампулу и нарушить стерильность культуры: ее засосет через образовавшиеся микротрещины, так как в ампуле вакуум. )

    Внимание! Не забывайте, что в запаянной ампуле вакуум. Если воздух в нее попадает сразу через большое отверстие, может распылиться находящаяся в ампуле культура и произойти ее выброс.

    Дав войти воздуху, быстро пинцетом надламывают и удаляют верхушку ампулы. Слегка обжигают отверстие и стерильной пастеровской пипеткой или шприцем вносят в ампулу растворитель (бульон или изотонический раствор). Перемешивают содержимое ампулы и засевают на среды. Рост восстановленных культур в первых посевах может быть замедлен.

    Длительно сохранять культуры можно также в жидком азоте (-196° С) в специальных приборах.

    Методы непродолжительного сохранения культур следующие: 1) субкультивирование (периодические пересевы на свежие среды) с интервалами, зависящими от свойств микроорганизма, среды и условий культивирования. Между пересевами культуры хранят при 4° С; 2) сохранение под слоем масла. Культуру выращивают в агаре столбиком высотой 5-6 см, заливают стерильным вазелиновым маслом (слой масла примерно 2 см) и хранят вертикально в холодильнике. Сроки хранения у разных микроорганизмов разные, поэтому из пробирок периодически высевают культуру, чтобы проверить ее жизнеспособность; 3) хранение при -20-70° С; 4) хранение в запаянных пробирках. По мере надобности сохраняемый материал высевают на свежую среду.

    Контрольные вопросы

    1. Что входит в понятие "бактериологическое исследование"?

    2. Какой должна быть культура для такого исследования?

    3. Что такое колония микробов, культура, штамм, клон?

    4. Что входит в понятие "культуральные свойства микробов"?

    Задание

    1. Изучите и опишите несколько колоний. Пересейте их на скошенный агар и на сектор.

    2. Изучите и опишите характер роста - культуры на скошенном агаре. Определите чистоту и морфологию культуры в окрашенном препарате.

    3. Пересейте культуру со скошенного агара на бульон и на дифференциально-диагностические среды. Изучите и запишите в протокол характер роста культуры на этих средах и ее ферментативные свойства.

    Известно значительное количество питательных сред, используемых для культивирования и поддержания (сохранения) микроорганизмов. Питательной средой в микробиологии называют среды, содержащие различные соединения сложного или простого состава, которые применяются для размножения микроорганизмов в лабораторных или промышленных условиях. Еще в 1930 году их было классифицировано не менее двух тысяч наименований, но число ингредиентов, являющихся их неотъемлемыми компонентами, относительно невелико, а их композиции создаются на определенных общих принципах. Для размножения любых бактерий необходимо обеспечить подходящее биофизическое окружение и биохимические питательные компоненты. Любая питательная среда должна соответствовать следующим требованиям: содержать все необходимые для роста питательные вещества в легко усвояемой форме; иметь оптимальную влажность, вязкость, рН, быть изотоничной, сбалансированной с высокой буферной емкостью и, по возможности, прозрачной. Для роста автотрофных бактерий потребности в питательных веществах довольно просты: вода, двуокись углерода и соответствующие неорганические соли. Например, бактерии рода Nitrobacter ассимилируют СО 2 и получают энергию путем окисления нитритов в нитраты. Гетеротрофные бактерии получают энергию в результате окисления (диссимиляции) восстановленных углеродных соединений.

    Гетеротрофные бактерии используют органические соединения в двух целях: 1) в качестве источника энергии; при этом органическое вещество окисляется или расщепляется с высвобождением энергии и образованием ряда конечных продуктов типа СО 2 , органических кислот и др; 2) в качестве субстратов, ассимилируемых непосредственно с образованием клеточных компонентов или для их синтеза в реакциях, требующих затрат энергии. Так, E.coli способна к росту на простой среде, содержащей только глюкозу и неорганические соли. Молочнокислые же бактерии растут на сложных средах, содержащих в качестве добавок ряд органических соединений (витамины, аминокислоты и др.), которые клетки не в состоянии синтезировать самостоятельно. Такие соединения называются факторами роста. Организмы, которые нуждаются в их добавлении к ростовой среде, называются ауксотрофными по соответствующим соединениям. Другая группа организмов, способная к росту на простых средах, содержащих источник углерода и энергии, а также набор основных биогенных элементов, получила название прототрофных . Следует учитывать и то, что в природе встречаются бактерии, которые способны размножаться в местах с низким пищевым потоком углерода – до 0,1 мг/л в день. Они получили название олиготрорфных, противоположную группу для них составляют бактерии копиотрофные – способные к росту на богатых пищевых субстратах.


    Выбор питательной среды зависит в значительной степени от целей эксперимента, а существующая классификация питательных сред учитывает характеристику их следующих особенностей.

    По составу питательные среды делятся на натуральные и синтетические . Натуральными называют среды, которые состоят из продуктов растительного или животного происхождения, имеющих неопределенный химический состав. Примерами питательных сред такого типа являются среды, представляющие собой смесь продуктов распада белков (казеина, мышц млекопитающих), образующихся при их гидролизе. Кислотный (НСl) гидролиз белков используется для приготовления полных гидролизатов. Действие ферментов типа трипсина, панкреатина, папаина, приводит лишь к частичному (неполному) гидролизу белков, в результате чего образуются пептоны . Как правило, на пептонных питательных средах микроорганизмы растут лучше, чем на питательных средах, приготовленных из полных гидролизатов или смесей аминокислот. При ферментативном гидролизе, вероятно, сохраняются лабильные факторы роста. Кроме того, многие микроорганизмы лучше размножаются на средах, содержащих небольшие пептиды, потому что их они могут усваивать непосредственно, а отсутствующие аминокислоты – нет. Обычно в составе такой среды ферментативный гидролизат белка обеспечивает потребность в таких источниках азота, как аминокислоты, углеводы (глюкоза), используется как источник углерода и энергии, соли удовлетворяют потребности бактерий в неорганических ионах, а дрожжевой экстракт обеспечивает потребности в витаминах. К питательным средам неопределенного состава можно отнести и среды, полученные на основе растительного сырья: картофельный агар, томатный агар, отвары злаков, дрожжей, пивное сусло, настои сена и соломы и др. Основное назначение таких питательных сред – выделение, культивирование, получение биомассы и поддержание культур микроорганизмов.

    К числу сред неопределенного состава относят и среды полусинтетические . В такую среду вносят известные соединения как явно необходимые; а также добавляют небольшое количество дрожжевого или кукурузного экстракта (или любого другого природного продукта) для обеспечения неизвестных потребностей роста. Такие среды часто используются в случае промышленного культивирования биологических объектов для получения продуктов метаболизма.

    Синтетические среды – это среды определенного состава, представленные чистыми химическими соединениями, взятыми в точно указанных концентрациях и соотношениях отдельных элементов. Обязательными компонентами таких сред являются неорганические соединения (соли) и углерод- и азотсодержащие вещества (типичными представителями являются глюкоза и (NH 4) 2 SO 4 . Часто к таким средам добавляют буферные растворы и хелатирующие соединения. Ауксотрофные организмы растут на таких средах только при добавлении соответствующих факторов роста. Основное назначение таких питательных сред – изучение особенностей физиологии и метаболизма микроорганизмов, выделение генетических рекомбинантов и т. д.

    По назначению среды разделяют на элективные и дифференциально-диагностические . Элективные среды обеспечивают преимущественное развитие одного или целой физиологической группы микроорганизмов. Например, для преимущественного выделения грамотрицательных бактерий бывает достаточным добавления в питательную среду трифенилметановых красителей (кристаллический фиолетовый, малахитовый зеленый и т. д.). Для выделения стафилоккоков в среду может быть добавлен хлористый натрий в концентрации 7,5 %. При этой концентрации рост других бактерий подавляется. Элективные среды применяются на первом этапе выделения чистой культуры бактерий, т. е. при получении накопительной культуры.

    Дифференциально-диагностические среды применяются для быстрой идентификации близкородственных видов микроорганизмов, для определения видовой принадлежности, в клинической бактериологии и др. Принцип построения дифференциально-диагностических сред основан на том, что разные виды бактерий различаются между собой по биохимической активности и имеют неодинаковый набор ферментов, расщепляющих субстраты, входящие в состав питательной среды.

    В состав дифференциально-диагностической среды входят:

    а) основная питательная среда, обеспечивающая размножение бактерий;

    б) определенный химический субстрат, отношение к которому является диагностическим признаком для данного микроорганизма;

    в) цветной индикатор, изменение окраски которого свидетельствует о биохимической реакции и наличии данной ферментной системы у исследуемого микроорганизма.

    Например, среда Эндо позволяет отличить клоны, сбраживающие лактозу от клонов, не обладающих этим свойством. Основными компонентами этой среды являются питательный (пептонный) агар, углевод и основной фуксин, обесцвеченный сульфитом (реактив Шиффа). Исходная питательная среда окрашена в розовый цвет. Микроорганизмы, не сбраживающие лактозу, образуют бесцветные колонии. При сбраживании лактозы до ацетальдегида последний реагирует с сульфитом и развививается красная окраска соответствующих колоний.

    Среда с эозином и метиленовым синим (среда Левина) в качестве индикаторов содержит эозин и метиленовый синий и исходно окрашена в черно-синий цвет. Клетки, осуществляющие брожение, образуют колонии, окрашенные в черный с металлическим блеском цвет, а колонии, не обладающие этим свойством, бесцветны. Подобные изменения окраски происходят потому, что красители присутствуют в среде не в виде самостоятельных соединений, а в виде комплексов с веществами питательной среды. При низких значениях рН эти комплексы выпадают в осадок, исходные же красители в этих условиях растворимы, при больших рН комплексы красителей бесцветны, тогда как метиленовый синий приобретает синюю окраску. Данная среда позволяет дифференцировать бактерии рода Escherichia от бактерий рода Proteus .

    По консистенции среды могут быть жидкими, полужидкими, твердыми, сыпучими . Жидкие питательные среды получают при растворении в воде определенного необходимого набора питательных веществ, макро- и микроэлементов. По составу они могут быть как натуральными, так и синтетическими. Рост микроорганизмов в жидкой среде может происходить в периодической (закрытой) системе, в этом случае после инокуляции среды не происходит ни добавления, ни удаления каких-либо компонентов, кроме газовой фазы (закрытая система). При проточном (непрерывном) культивировании характерна постоянная подача свежих питательных компонентов со скоростью, равной скорости удаления среды (открытая система).

    Среды в твердом состоянии в форме плотных гелей используются в бактериологии со времен Р. Коха. Наиболее важным преимуществом использования твердых сред является то, что на них можно выращивать микроорганизмы в виде колоний, образующихся из отдельных клеток популяции.

    Приготовление твердых питательных сред достигается добавлением к жидким средам определенных уплотнителей, в качестве которых могут выступать агар, желатина, силикагель, каррагенан. Наиболее распространенным из уплотнителей является агар – полисахарид, выделяемый из красных морских водорослей и состоящий из двух полисахаридов – агарозы (70 %) и агаропектина. Он обладает рядом полезных свойств, в частности: 1) способен образовывать в воде гели;

    2) плавится при температуре 100 °С и затвердевает при 45 °С; 3) не расщепляется под влиянием ферментов большинства видов микроорганизмов; 4) термолабильные вещества и живые микроорганизмы не разрушаются при добавлении к нагретому до 45 °С расплавленному агару, если смесь сразу же охладить; 5) агаровые гели имеют высокую степень прозрачности; 6) обычно используемые концентрации
    1,5 ‑ 2,0 % являются относительно невысокими и их использование экономично.

    Желатина – белок, приготовленный из кожи и костей, – в настоящее время используется для специальных целей, поскольку образуемый ею гель плавится при температурах около 25 – 30 °С. Кроме того, желатина разжижается протеолитическими ферментами многих микроорганизмов. «Уплотняющая» концентрация желатины – 17 – 20 %.

    Силикагелем называют двуокись кремния (SiO 2). Его стерильный золь готовят из раствора силиката натрия и перед использованием, для того чтобы вызвать образование геля, к нему добавляют питательную среду, содержащую электролиты. Среды на основе силикагеля
    (1,5 – 2,0 %) используют для получения культур автотрофных бактерий, так как при этом в среде отсутствуют органические вещества. При добавлении в такие минеральные среды различных органических веществ можно исследовать способность гетеротрофных бактерий использовать их в качестве единственных источников углерода. С помощью силикагелиевых сред также можно определять потребности бактерий в витаминах.

    Каррагенан («растительная желатина») – добывается путем экстракции из определенных видов красных морских водорослей. Калиевые соли некоторых типов каррагенанов способны образовывать плотные (2 %) прозрачные гели, которые могут быть заменителями агара. Каррагенан значительно дешевле агара, не разрушается большинством видов бактерий. Однако разливать приготовленные среды следует при высокой температуре – 55 – 60 °С.

    Полужидкие среды содержат гелеобразующее вещество в низкой (0,3 – 0,7 %) концентрации и имеют мягкую желеподобную консистенцию. Такие среды пригодны для изучения подвижности и хемотаксиса клеток, культивирования микроаэрофилов.

    Сыпучие среды представляют собой массу в той или иной степени измельченного и увлажненного сырья (чаще всего, растительного). Основное их назначение – использование в пищевой промышленности (получение соевого соуса или рисовой водки), сельском хозяйстве (силосование кормов) и т. д.

    В бактериологической практике чаще всего используются сухие питательные среды, которые получают в промышленных масштабах – триптические гидролизаты дешевых непищевых продуктов (рыбные отходы, мясокостная мука, технический казеин) и питательный агар. Сухие среды могут храниться в течение длительного времени, удобны при транспортировке, имеют относительно стандартный состав.

    1.По составу питательные среды делятся на простые и сложные

    Различают группу сред общего назначения - простых. К этой группе относят мясо-пептонный бульон (простой питательный бульон), мясо-пептонный агар {простой питательный агар), питательный желатин. Эти среды применяются для выращивания многих патогенных микробов. Среды общего назначения, или простые питательные среды, готовятся обычно из гидролизатов с добавлением пептона и хлористого натрия. Их используют также как основу для приготовления сложных сред.

    Также по составу выделяют белковые, безбелковые и минеральные среды.

    2. По происхождению среды разделяют на искусственные и естественные (природные ).

    Естественные питательные среды могут содержать компоненты животного (например, кровь, сыворотка, жёлчь) или растительного (например, кусочки овощей и фруктов) происхождения.

    3.По назначению выделяют консервирующие среды (для первичного посева и транспортировки), среды обогащения (для накопления определённой группы бактерий), среды для культивирования {универсальные простые, сложные специальные и для токсинообразования), среды для выделения и накопления (консервирующие, обогащения и элективные) и среды для идентификации (дифференциальные и элективно-дифференциальные).

    Консервирующие питательные среды предупреждают отмирание патогенов и подавляют рост сапрофитов. Наибольшее применение нашли глицериновая смесь, гипертонический раствор, глицериновый консервант с LiCl 2 , раствор цитрата натрия и дезоксихолата натрия.

    Среды обогащения для бактерий

    Среды обогащения (например, среда Китта-Тароцци, селенитовый бульон, тиогликолевая среда) применяют для накопления определённой группы бактерий за счёт создания условий, оптимальных для одних видов и неблагоприятных для других. Наиболее часто в качестве подобных агентов используют различные красители и химические вещества - соли жёлчных кислот, тетратионат Na+, теллурит К, антибиотики, фуксин, генциановый фиолетовый, бриллиантовый зелёный и др.

    Также по назначению различают среды элективные, специальные и дифференциально-диагностические.

    Среды элективные (селективные, избирательные, накопления, обогащения). Принцип создания элективных питательных сред основан на удовлетворении основных биохимических и энергетических потребностей того вида микроба, для культивирования которого они предназначены, или на добавление ингибиторов, подавляющих рост сопутствующей микрофлоры. Определенный состав и концентрация питательных веществ, микроэлементов, ростовых факторов при строго определённом значении pH или добавлении ингибиторов обеспечивают оптимальные условия для выращивания одного или нескольких видов микроорганизмов. При посеве на них материала, содержащего смесь различных микробов, раньше всего будет проявляться рост того вида, для которого среда будет элективной. Примером элективных сред являются желчный бульон, селенитовый бульон, среда Плоскирева – для выращивания микробов семейства кишечных, щелочная пептонная вода – для холерного вибриона.

    Желчный бульон . К МПБ добавляют 10-20% бычьей желчи. Желчь подавляет рост коков и воздушной флоры, но благоприятна для размножения сальмонелл.

    Селенитовый бульон . Состоит из фосфатного бульона с добавлением натриевой соли селенита, которая является ингибитором роста кокковой флоры, кишечной палочки, но не задерживает роста сальмонелл.

    Среда Плоскирева . Плотная среда, содержащая ингибиторы кишечной палочки, коков, но благоприятная для роста шигелл и сальмонелл, размножение которых не тормозится бриллиантовым зелёным и желчными солями.

    Пептонная вода . Содержит 1% пептона и 0,5% хлористого натрия. Среда является элективной для холерных вибрионов, т.к. они лучше других бактерий размножаются на “голодных средах”, особенно при щелочной реакции, потому что сами выделяют кислые продукты жизнедеятельности.

    Специальные среды. Необходимы для культивирования бактерий, не растущих на простых питательных средах. Для некоторых организмов к простым питательным средам необходимо добавлять углеводы, кровь и др. дополнительные питательные вещества. Примерами простых питательных сред являются сахарный бульон и сахарный агар для стрептококка (готовится соответственно из МПБ и МПА, к которым добавляется 0,5-2% глюкозы).

    Дифференциально-диагностические среды используют для определения видовой принадлежности исследуемого микроба, основываясь на особенностях его обмена веществ. По своему назначению дифференциально-диагностические среды разделяют следующим образом:

    1. Среды для выявления протеолитической способности микробов, содержащие в своем составе молоко, желатин, кровь и т.д.

    2. Среды с углеводами и многоатомными спиртами для обнаружения различных сахаролитических ферментов.

    В состав дифференциально-диагностических сред, предназначенных для выявления сахаролитических свойств и окислительно-восстановительных ферментов, вводят индикаторы: нейтральную красную, кислый фуксин, бромтимоловый синий, водный голубой с розоловой кислотой (ВР). Изменяя свою окраску при различных значениях рН, индикатор указывает на наличие фермента и расщепление введённого в среду ингредиента.

    Примеры дифференциально-диагностических сред:

    Среда Эндо . Состоит из МПА с добавлением 1% лактозы и обесцвеченного сульфитом натрия основного фуксина (индикатор). Среда Эндо имеет слаборозовый цвет. Используется в диагностике кишечных инфекций для дифференциации бактерий, разлагающих лактозу с образованием кислых продуктов, от бактерий, не обладающих этой способностью. Колонии лактозопозитивных микробов (кишечная палочка) имеют красный цвет вследствие восстановления фуксина. Колонии лактозонегативных микроорганизмов - сальмонелл, шигелл и др. -бесцветны.

    К дифференциально-диагностическим средам относятся короткий и развёрнутый пёстрый ряд . Он состоит из сред с углеводами (среды Гисса), МПБ, молока, мясопептонной желатины.

    Среды Гисса готовятся на основе пептонной воды, к которой прибавляются химически чистые моно-, ди- или полисахариды (глюкоза, лактоза, крахмал и др.).

    Для обнаружения сдвигов рН в результате образования кислот и разложения углевода в среды прибавляют индикатор. При более глубоком расщеплении углеводов образуются газообразные продукты (СО 2 , СН 4 и др.), которые улавливаются при помощи поплавков - маленьких пробирочек, опущенных в среду кверху дном. Среды с углеводами могут готовиться и плотными – с добавлением 0,5-1% агар-агара. Тогда газообразование улавливается по образованию пузырьков (разрывов) в столбике среды.

    На МПБ, входящем в пёстрый ряд, обнаруживают продукты, образующиеся при расщеплении аминокислот и пептонов (индол, сероводород). Сероводород обнаруживается путем помещения в МПБ после засева культуры полоски фильтровальной бумаги, пропитанной раствором уксуснокислого свинца. При расщеплении аминокислот, содержащих серу, выделяется сероводород, бумажка чернеет за счёт образования сернистого свинца. Для определения индола можно использовать сложный индикатор. Индол образуется при расщеплении триптофана, и его можно обнаружить при добавлении к культуре, выращенной на МПБ, этого индикатора. При наличии индола МПБ окрашивается в зеленый или синий цвет.

    В практических бактериологических лабораториях широко применяют микро- и экспресс-методы для ориентировочного изучения биохимических свойств микроорганизмов. Для этой цели существует множество тест-систем. Наиболее часто используют систему индикаторных бумаг (СИБ). СИБы представляют из себя диски фильтровальной бумаги, пропитанные растворами сахаров или других субстратов в сочетании с индикаторами. Такие диски опускают в пробирку с выросшей в жидкой питательной среде культурой. По изменению цвета диска с субстратом судят о работе фермента. Микро-тест системы для изучения идентификации энтеробактерий представлены одноразовыми пластиковыми контейнерами со средами, содержащими различные субстраты, с добавлением индикаторов. Посев чистой культуры микроорганизмов в такие тест-системы позволяет быстро выявить способность бактерий утилизировать цитраты, глюкозу, сахарозу, выделять аммиак, индол, разлагать мочевину, лизин, фенилаланин и т.д.

    Оглавление темы "Методы выделения бактерий. Микроскопия. Питательные среды для культивирования бактерий.":









    Классификации питательных сред для культивирования бактерий. Классификация сред для бактерий. Искусственные питательные среды для бактерий. Естественные среды для выращивания бактерий.

    Среды классифицируют по консистенции, составу, происхождению, назначению и загрязнённости материала.

    При классификации питательных сред по консистенции питательные среды разделяют на плотные (твёрдые), полужидкие и жидкие.
    При классификации питательных сред по составу выделяют белковые, безбелковые и минеральные среды.
    При классификации питательных сред по происхождению среды разделяют на искусственные и естественные (природные).

    Искусственные питательные среды для бактерий

    Искусственные среды разделяют на животные [например, мясопептонный агар (МПА) или мясопептонный бульон (МПБ)] и растительные (например, настои сена и соломы, отвары злаков, дрожжей или фруктов, пивное сусло и др.).

    Естественные среды для выращивания бактерий

    Естественные питательные среды могут содержать компоненты животного (например, кровь, сыворотка, жёлчь) или растительного (например, кусочки овощей и фруктов) происхождения. По назначению выделяют консервирующие среды (для первичного посева и транспортировки), среды обогащения (для накопления определённой группы бактерий), среды для культивирования {универсальные простые, сложные специальные и для токсинообразования), среды дм выделения и накопления (консервирующие, обогащения и элективные) и среды для идентификации (дифференциальные и элективно-дифференциальные).

    Классификации питательных сред по загрязнённости материала

    Если материал слабо загрязнён посторонней микрофлорой, то для выделения чистых культур применяют простые (по составу) среды . При обильной контаминации сапрофитами используют специальные или элективные (для отдельных видов), селективные (только для отдельных бактерий), дифференциально-диагностические (для облегчений идентификации) среды .